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Abstract

This paper concerns the calculation of wave dynamics in the intake systems of naturally aspirated
internal combustion (IC) engines. In particular, it presents a method for improving the boundary
conditions required to solve the one-dimensional Euler equations that are commonly used to describe the
wave dynamics in time and space. A number of conclusions are reached in this work. The first relates to the
quasi-steady state inflow boundary specified in terms of ingoing and outgoing characteristics that is
commonly adopted for engine simulation. This is correctly specified by using the pair of primitive variables
pressure ðpÞ and density ðrÞ but will be unrealistic at frequencies above a Hemholtz number of 0.1 as only
stagnation values po; ro are used. For the case of IC engine intake simulations this sets a maximum
frequency of around 300 Hz: Above that frequency the results obtained will become increasingly
unrealistic. Secondly, a hybrid time and frequency domain boundary has been developed and tested against
linear acoustic theory. This agrees well with results obtained using a quasi-steady state boundary at low
frequencies (Helmholtz number less than 0.1) and should remain realistic at higher frequencies in the range
of Helmholtz number 0.1–1.84. Thirdly, the cyclic nature of the operation of the IC engine has been
exploited to make use of the inverse Fourier transform to develop an analytical hybrid boundary that
functions for non-sinusoidal waves in ducts. The method is self-starting, does not rely on iterations over
complete cycles and is entirely analytical and therefore is an improvement over earlier hybrid boundaries.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Intense sound waves are formed in the intake systems of internal combustion (IC) engines. A
proportion of the sound power contained in these waves is radiated as intake orifice noise and is of
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primary interest to vehicle refinement engineers. Poor control of intake orifice noise may result in
the failure of the legislative pass by noise test or may cause adverse comment from potential
customers.
The sound waves can also affect the power performance of naturally aspirated IC engines [1].

By phasing the waves so that a high pressure is caused directly behind the intake valve 20–50� of
crankshaft rotation before it closes, the volumetric efficiency of the engine can be improved. At
low volumetric efficiencies, the sound waves are the resonant response of the intake system to
excitation caused by unsteady mass flow through the intake valve [2]. At higher volumetric
efficiencies, for instance those found in racing engines, the conversion of inflow momentum to
static pressure rise on the back of the closing inlet valves is also important [3].
This paper concerns the calculation of the wave dynamics in the intake systems of naturally

aspirated IC engines. In particular, it presents a method for improving the boundary conditions
required to solve the one-dimensional Euler equations that are commonly used to describe the
wave dynamics in time and space.
Section 2 opens with a discussion of possible boundary conditions to solve the Euler equations

in one dimension. It goes on to explain why quasi steady state boundary conditions expressed in
the form of Riemann invariants are almost exclusively used in the time domain simulation of
engine performance. The limitations of such boundaries are considered.
Section 3 describes a hybrid boundary that uses the results of a linear acoustic model to

generate a frequency variable (and therefore non-quasi steady state) boundary that may be
expressed in terms of Riemann invariants.
Section 4 compares the results of calculations made using a traditional quasi-steady state

boundary condition with the results obtained using the hybrid boundary. Conclusions are drawn
in Section 5.

2. Boundary conditions to the 1-D Euler equations

The general equations that govern fluid motion can easily be written down if the scalar and
vector conservation laws are applied to an arbitrary control volume [4]. These can be reduced to
the Euler equations by setting the viscosity and the thermal conductivity coefficient to zero. By
considering one-dimensional flow only, the Euler equations are the following continuity,
momentum and energy equations:
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where a denotes the sound speed, p the pressure, u the velocity, r the density, q the heat transfer
and fe is the external force vector per unit mass.

ARTICLE IN PRESS

M.F. Harrison, R. Perez Arenas / Journal of Sound and Vibration 270 (2004) 111–136112



In declaring the equations of motion in the form shown above, a deliberate choice has been
made to follow a particular style of presentation. The style was adopted by Benson for his work
on the simulation of wave action in IC engine intake/exhaust systems [5]. Benson began this work
in the mid 1950s and his style of presentation was clearly influenced by contemporary publications
by Shapiro [6] and Bannister and Mucklow [7] that he referenced regularly [5]. Although Benson’s
book [5] is now out of print, its influence is still clear in contemporary texts on IC engine breathing
[8]. Because of the wide dissemination of books and papers that use the Benson style, two
generations of engineers have grown accustomed to a particular presentation of the equations of
motion and a particular pattern of the derivations that flow from them. Because of this, that style
is retained here although some comment on it is offered.
Firstly, Winterbone and Pearson [8] state that the form adopted for Eqs. (1)–(3) is the non-

conservation law form, whereas the conservation law form would include partial derivatives of the
products of the variables p; r; u: Clarifying a similar statement, Hirsch [4] points out that the two
forms are fully equivalent from a mathematical point of view but a numerical discretization of the
non-conservation law form would lead to a numerical scheme where the total mass in the system
would not be kept constant. It is well known that the mesh method of characteristics which is
based on a discretization of the non-conservation law form does not conserve mass.
Secondly, Eqs. (2) and (3) differ a little from those shown in Refs. [5,8] wherein the friction term

fe is replaced by

G ¼ 1
2

ujuj f
4

D
; ð4Þ

where D is the hydraulic diameter of the duct and f is the wall friction factor. Bannister and
Mucklow included such a term in their calculation scheme [7]. The modulus of the velocity is
introduced to ensure that the pipe wall friction always opposes the fluid motion. In the equations
of motion presented here, G is replaced by an external force vector per unit mass fe: This avoids the
use of Eq. (4), which is a specific friction model that relies on empirical data for f and the
assumption that the friction increases with the square of the velocity. This argument is rather an
academic one, as fe is eventually neglected in the analysis in Section 2.1 on the assumption of a thin
boundary, but the presence of fe rather than G in Eqs. (2) and (3) warrants a brief explanation.
The equations of motion (1)–(3) together form a set of three simultaneous partial differential

equations with three independent variables p; r and u; with a linked variable a where

a2 ¼
gp

r
: ð5Þ

The equations need both initial and boundary conditions for their solution.
The initial conditions simply require the definition of the spatial distribution of the primitive

flow variables r; u; p along with the appropriate thermodynamic data; temperature ðTÞ; the gas
constant ðRÞ; the specific heat capacities ðcp; cvÞ and the heat transfer q:
Boundary conditions require more detailed consideration which follows in Section 2.1.

2.1. Boundary conditions: primitive variables and characteristic variables

Stationary solid boundaries should only reflect waves travelling out from the interior of the
control volume. They should not emit or absorb waves. However, the so-called farfield boundaries
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should allow waves to travel in and out of the control volume [9]. Farfield boundary conditions
must allow an outgoing wave to pass without reflection and in turn specify a corresponding in-
going wave.
In-going waves carry information from the exterior to the control volume. Assuming that the

boundary is thin so that the thermodynamic quantities are the same on the inner and outer
surfaces, that information could take the form of

(i) conserved quantities (mass, momentum, energy),
(ii) primitive flow variables (r; u; p),
(iii) the so-called characteristic variables (vo; vþ; v�).

The characteristic variables will be derived from Eqs. (1)–(3) in the pattern set out by Benson [5]
for the same reason that the form of the equations of motion (1)–(3) was adopted. However, the
interested reader might seek alternative patterns. For example, Landau and Lifshitz [10] derive the
two characteristic variables required for the analysis of homentropic flow in only a few lines of
text.
The derivation of the characteristic variables is as follows.
The continuity equation (1) and the momentum equation (2) and the energy equation (3) can be

linearly combined to give two characteristic equations [8]:
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The energy equation (3) provides a third characteristic equation [8].
By defining three characteristic lines where

dx

dt
¼ u þ a; ð8Þ

dx

dt
¼ u � a; ð9Þ

dx

dt
¼ u; ð10Þ

the three partial differential characteristic equations (6), (7), (3) can be transformed into three
ordinary differential equations known as compatibility relationships (11)–(13):

dp

dt
þ ra

du

dt
� rðg� 1Þðq � %u feÞ � ra fe ¼ 0 ð11Þ

for the case when dx=dt ¼ u þ a;

dp

dt
� ra

du

dt
� rðg� 1Þðq � %u feÞ � ra fe ¼ 0 ð12Þ
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for the case when dx=dt ¼ u � a;

dp

dt
� a2

dr
dt

� rðg� 1Þðq � %u feÞ � ra fe ¼ 0 ð13Þ

for the case when dx=dt ¼ u:
For the case of a thin boundary q and fe are set to zero. Inflow to a practical intake pipe is a

fairly homentropic process. Thus, we can assume ds ¼ 0 across the boundary where s denotes
specific entropy. The three homentropic compatibility relationships can be extracted from
Eqs. (11)–(13), thus
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þ ra

du

dt
¼ 0 for
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¼ u þ a; ð14Þ
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¼ u: ð16Þ

Eq. (16) can be re-arranged as

a2 ¼
dp

dr
¼

@p

@r

� �
s

; ð17Þ

which is a well-known isentropic relation and therefore, for the case of homentropic flow, the
compatibility relation (16) may be discarded from the set. Thus, the original set of three partial
differential equations of motion (1)–(3) are reduced to a convenient pair simple of ordinary
differential equations (14) and (15).
The primitive variables p; u; r may be different on either face of a common boundary. The inter

relationship between the two sets of primitive variables is given by the changes in characteristic
variables across the boundary, thus

dvþ ¼ du þ
dp

ra
; ð18Þ

dv� ¼ du �
dp

ra
: ð19Þ

2.2. The inflow boundary: Riemann invariants

The ultimate boundary for the IC engine intake system is that of subsonic inflow to a pipe.
In this case it can be shown that two quantities only are required to properly specify the
boundary [9].
The boundary is properly specified if the exterior information given uniquely determines the

incoming characteristic variables when combined with interior information, but these do not
restrict or specify the outgoing characteristic variable.
Specifying only one exterior primitive variable for the subsonic inflow case obviously under

specifies the problem. Specifying all three primitive exterior variables would specify the outgoing
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characteristic value as well as the ingoing characteristic values and therefore the boundary would
be incorrect.
Therefore, two exterior primitive variables should be specified. These may be r and p or equally

r and u but not u and p because the last case would completely specify both ingoing and outgoing
characteristic variables [9] (see Eqs. (18) and (19)).
To summarize, ingoing and outgoing characteristic values must be considered as a set if a

boundary is to be considered to be valid.
From the second law of thermodynamics, and assuming an isentropic process we get

dp ¼ r
2a

ðg� 1Þ
da: ð20Þ

Substituting Eq. (20) into Eqs. (18) and (19) and integrating along the characteristic lines we get
the Riemann invariants:

l ¼ vþ ¼ a þ
ðg� 1Þ
2

u; l constant when
dx

dt
¼ u þ a; ð21Þ

b ¼ v� ¼ a �
ðg� 1Þ
2

u; b constant when
dx

dt
¼ u � a: ð22Þ

For the general boundary case we could specify:

(i) Ingoing conserved mass and momentum.
(ii) Ingoing p and r or r and u (and s if non-homentropic).
(iii) Ingoing b if l is the outgoing Riemann invariant (a modified and non-invariant l is used if

the flow is non-homentropic [5]).

For the inflow boundary case it would be difficult to specify the conserved quantities as these
cannot be measured directly. The pair of measurable primitive variables r; u could be specified but
some method of estimating both r and u would be required.
It would seem obvious to specify the pair of primitive variables p and r for the inflow boundary.

The former of these quantities is easily measured. However, it is only practical to specify the
exterior quantities in terms of their static steady state values po and ro: To do otherwise would
require either a separate analytical model for time varying p and r or an exterior computational
grid bounded by a half-space. Specifying the static values for p and r involves the making of
several implicit assumptions. Firstly, the boundary is (quasi) steady state. Secondly, the amplitude
of sound radiated from the inflow orifice is negligibly small compared with the static pressure.
Both of the above assumptions are tolerable for application to the intake of a low-speed IC

engine where the intake wave action is dominated by frequency components of pressure below
100 Hz [2,11] but would be less appropriate for high-speed engines where wave action occurs at
500 Hz or more [3].
Most of the widely used computer codes for IC engine simulation use an inflow boundary that

specifies po and ro: However, they generally express these in terms of characteristic variables
(Riemann invariants mostly) so as to describe the boundary in terms of outgoing and ingoing
waves that are easily understood. European examples of this include: Benson’s mesh method of
characteristics [5], Winterbone and Pearsons total variation diminishing flux limiter method [8,12],
Giannatta’s essentially non-oscillatory finite-volume method [13,14] and Onorati’s Lax Wendroff
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and Mac Cormack method [15]. All four use Riemann variables to formulate their inflow
boundary. The derivation of this common boundary is as follows. We start with

a2 ¼
gp

r
: ð23Þ

This presents the primitive pair p; r in terms of one variable sound speed a:
From Eqs. (21) and (22)

a ¼ lþ b=2; ð24Þ

u ¼ l� b=g� 1: ð25Þ

The non-conservative momentum equation down a streamline in isentropic flow (Fanno flow)
can be written [16] as

a2o ¼ a2 þ
ðg� 1Þ
2

u2; ð26Þ

where g is the ratio of specific heat capacities.
Substituting Eqs. (24) and (25) into Eq. (26) gives on re-arrangement [5]:

b ¼ a
3� g
gþ 1

� �
lþ 4

g� 1
gþ 1

� �
a2o � 1�

3� g
gþ 1

� �2 !
l2

" #1=2
: ð27Þ

Eq. (27) is used to define the system inflow boundary in a number of IC engine simulations [12–
15] even though the numerical schemes employed to solve the equations of fluid motion differ in
each case. The implications of the use of Eq. (27) are this. Firstly, Eq. (27) expresses the incoming
Riemann invariant b in terms of the fluctuating outgoing Riemann invariant l; the (fluctuating)
gas temperature and chemistry that govern g; and the stagnation speed of sound. With the
inclusion of that stagnation datum, the boundary becomes quasi-steady state. Secondly, the use of
Eq. (26) in the derivation of Eq. (27) means that homentropic, non-viscous, non-rotational inflow
is assumed with the absence of external forces. Thus, despite the apparent complexity of Eq. (27)
with its many bracketed terms, it actually models a rather idealized boundary condition.
To summarize the discussion in this section of the paper: the inflow boundary may be specified

using the primitive variable pair ro; po and inspection of the characteristic variables shows this to
be one of several correct boundary choices. Alternatively, the ratio of these two and the isentropic
assumption may be used to yield a boundary specified by stagnation sound speed ao and the
outgoing characteristic variable. This approach has been widely used to supply an inflow
boundary to very different numerical schemes for solving the 1-D Euler equations.

3. A hybrid boundary to the 1-D Euler equations

In the previous section it was shown how ao and l could be used to specify an inflow boundary
and, hence, determine b: Although this boundary is correctly specified (it uses only the primitive
pair p; r) it is not accurate at higher frequencies as it is specified by stagnation conditions only.
Thus, it is a quasi-steady state boundary.
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The solution of the 1-D Euler equations would be improved for the inflow case (and other cases
that otherwise rely on quasi-steady state boundaries) if a dynamic boundary could be devised.
One such boundary is described here.
The premise for the hybrid boundary is simple. The correct ratio of fluctuation acoustic

pressure to particle velocity may be calculated from linear plane wave acoustic theory at any given
plane in a duct upstream from the point of inflow [17]. This ratio varies with frequency and can be
used as a boundary condition if l is given and b is found from the isentropic relation

P

P0
¼

a

ao

� �2g=ðg�1Þ
ð28Þ

and on substitution of Eq. (24) we get

P

P0
¼

lþ b
2ao

� �2g=ðg�1Þ
: ð29Þ

Knowing Eqs. (29) and (25) we can write

*p

*u
¼

P0ððl
T þ bÞ=ð2aoÞÞ

2g=ðg�1Þ � P0

	 

ðlT � bTÞ=ðg� 1Þ

: ð30Þ

lT and bT are time retarded values of the characteristic variables at the hybrid boundary. This
time shifting is an important part of the hybridization and will be discussed later. Eq. (30) has
been solved iteratively [18] although an analytical solution can be found, thus:
Let

lT � bT

ðg� 1Þ
¼ uT; ð31Þ

*p

*u
¼ z: ð32Þ

Eq. (30) becomes

zuT ¼ po
lT þ b
2ao

� �2g=ðg�1Þ
�po;

lT þ b
2ao

¼
zuT þ po

po

� �ðg�1Þ=ð2g
Þ;

b ¼ 2a0
zuT þ po

po

� �ðg�1Þ=ð2gÞ
�lT: ð33Þ

Unlike the quasi-steady state boundary described by Eq. (27), Eq. (33) describes a dynamic
boundary where time varying primitive variables p; u are used as input along with ao; l and g:
If the outgoing Riemann variable l is a strict sinusoid then a single value of z is calculated from

linear acoustic theory and either Eq. (30) is solved iteratively or Eq. (33) is solved directly. If l is
not sinusoidal then zð f Þ must be transposed to the time domain using the inverse Fourier
transform before Eqs. (30) and (33) can be used.
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The present hybrid boundary has certain advantages over some alternative hybrid boundaries
that are also based on the Riemann variables. Payri et al. [19] used a modified method of
characteristics to solve the 1-D Euler equations. This produced time domain values for positive
and negative going pressure waves, which could be transformed to the frequency domain using the
fast Fourier transform. These pressure components could then be combined with the output from
a linear acoustic model to provide a new set of pressure components, which became pressure time
values with the application of the inverse Fourier transform. The method was iterative, solving the
hybrid boundary for one complete cycle at a time. The results of the calculations therefore
updated only once every cycle. An initial pressure and velocity field had to be assumed for the
calculation to start.
Harrison and Davies [20] developed a hybrid boundary that was analytical and did not require

updating on a cycle by cycle basis nor did it require an initial sound field to start. However, it
relied on a simplified means of estimating the value of uðtÞ at the hybrid boundary based on the
gradients of nearby characteristic lines.
The present hybrid boundary is an alternative to the early Harrison and Davies boundary that

neither requires an initial sound field to start nor does it require an estimate of uðtÞ at the hybrid
boundary. Both these attributes are seen as useful developments in the field of hybrid boundaries.
The details of the hybrid boundary will now be presented starting with the simplest case when l

is sinusoidal and progressing to the more general case where l is cyclic but not sinusoidal. In
either case the first step is to calculate a time shift for the hybrid boundary.
Fig. 1 shows the general test case where a length of pipe has a source at the left-hand end and an

open-end boundary at the other end. The source produces a pressure fluctuation and l
characteristics propagate from left to right in this case. There is no net mass inflow at the right-
hand end. The propagation is calculated using the mesh method of characteristics (MOC) [5].

3.1. Preliminary calculations made using a quasi-steady state boundary for the open-end of a pipe

without inflow

We declare for the moment that the open-end boundary is a quasi-steady state pressure release
boundary. This is a simplification of the inflow boundary described in Section 2.2 but is more
realistic for the test case that involves a sinusoidal pressure excitation without mean flow. The
quasi-steady state open-end pipe boundary may be derived from the general hybrid boundary
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(33). In the open ended pipe case p ¼ po for all time and Eq. (33) reduces to

b ¼ 2ao
p0 þ po

po

� �ðg�1Þ=2g
�l;

p0 ¼ zuT ¼ 0 in this case;

b ¼ 2ao � l: ð34Þ

Fig. 2 shows the time history for l at a point in the pipe that is 0:1 m from the source (hereafter
called the hybrid plane), calculated with a ‘pure’ MOC and using the boundary given by Eq. (34)
at the right hand end of the pipe. The calculation starts with the fluid at rest in the pipe so that

l ¼ a þ
ðl� 1Þ
2

u ¼ ao: ð35Þ

The calculation proceeds with the source producing a 96 Hz pressure sinusoid with a peak
pressure of 2 Pa: Close scrutiny of Fig. 2 shows that the value of l remains at the initial level equal
to ao for a short time. That time is the time it takes for the l ‘wave’ to propagate from the source
plane to the hybrid plane, i.e.,

lTIME ¼
0:1 m

%a
C
0:1

ao
C0:000293 s; ð36Þ

where %a is the time average wave speed during that short interval.
The l wave continues to propagate until it reaches the open-end boundary where it is reflected

and a b wave is created in accordance with Eq. (34). That b wave propagates from right to left in
this case.
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Fig. 3 shows the time history of b at the hybrid plane. For the first 0:006 s b remains at its
initial value:

b ¼ ao �
ðg� 1Þ
2

u ¼ ao: ð37Þ

This is the time it takes for the l wave to travel from the source to the open end plus the time
taken for the b wave thus created to travel back to the hybrid plane.

bTIMEC
0:98þ 0:88

%a
C
1:86

ao
C0:00545 s: ð38Þ

The implications of these two time delays lTIME and bTIME are clearly shown in Figs. 4 and 5. Fig.
4 shows the pressure time history at the hybrid boundary given by

p0 ¼ po
lþ b
2ao

� �2g=ðg�1Þ
�po: ð39Þ

For the period zero seconds to lTIME ; l ¼ b ¼ ao and p ¼ 0 (Fig. 2). For the time period lTIME to
bTIME l has a fluctuating value (Fig. 2) and b ¼ ao (Fig. 3). The fluctuating pressure has a
maximum value of 1 Pa (Fig. 4). After bTIME seconds, both l and b have fluctuating values and
the fluctuating pressure has a maximum value of 2 Pa clearly demonstrating the superposition of
the l and b waves. The fluctuation frequency of 96 Hz was chosen deliberately to produce a
pressure maximum at the hybrid plane.
Fig. 5 shows the particle velocity at the hybrid boundary given by Eq. (25).
For the period lTIME ; l ¼ b ¼ ao and u ¼ 0 (Fig. 2). For the time period lTIME to bTIME l has a

fluctuating value and b ¼ ao (Fig. 3). A fluctuating particle velocity is produced with a maximum
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Fig. 4. Acoustic pressure at the hybrid plane with a pure method of characteristics calculation, 96 Hz:

Fig. 5. Acoustic particle velocity at the hybrid plane with a pure method of characteristics calculation, 96 Hz:
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amplitude given by (Fig. 5)

uMAXC
pMAX

roao
C

1

1:19	 343:11
C2:4	 10�3 ms�1: ð40Þ

After the period bTIME ; lCb and uC0 (Fig. 5). A near zero particle velocity is expected at the
hybrid plane when a maximum fluctuating pressure is encountered as shown in Fig. 4.
Fig. 5 highlights one of the problems associated with the mesh method of characteristics, that is

a spurious velocity transient formed early in the calculation when the calculation is started from
conditions of rest in the pipe. That transient will propagate up and down the pipe and will take
many cycles to decay [21]. The problem may be avoided if the calculation starts with the non-
stagnation conditions in the duct being specified by some other (simplified) model [20] such as the
one given in Refs. [2,3].

3.2. Calculations made using a hybrid boundary for the case of an the open-ended pipe without inflow

We return to the general test case in Fig. 1. We declare a hybrid boundary (Eq. (30) or (33)), at
the hybrid plane. For that hybrid boundary to work correctly when used with the mesh method of
characteristics, the l and b time histories at the hybrid plane should match those produced from
the pure method of characteristics (Figs. 2 and 3). This can be achieved when the following rules
are observed:

(i) For the time period t ¼ 0 to bTIME ; b at the hybrid plane must retain its initial value.
(ii) Thereafter, bmay be calculated using either (30) or (33) providing that at time t; the value of l

used is that corresponding to lðt � dtÞ ¼ lT;

dt ¼ bTIME � lTIME ð41Þ

and the value of u used is the one corresponding to uðt � dtÞ ¼ uT:

When the sound in the pipe is purely sinusoidal, zð f Þ may be calculated at that frequency only
and Eq. (30) or (33) may be solved in a time marching mesh method of characteristics calculation
providing the time shift rules above are observed. In this case zð f Þ has been found using the theory
developed by Davies [17] which has been applied with success to the intake systems of practical IC
engines [2,3]. Figs. 6 and 7 show the l and b time histories, respectively, for a hybrid calculation
solving Eq. (30) for the case of a 2 Pa pressure fluctuating pressure at 96 Hz: The 2 Pa at 96 Hz
problem was used earlier in Section 3.1 for a pure method of characteristics calculation with a
quasi-steady state boundary at the open end. The fact that the results in Figs. 2 and 6 and Figs. 3
and 7 match closely is validation that the hybrid method is working correctly. Close inspection of
the four figures show that although the two sets of l values agree perfectly the two sets of b values
do not. The l values are determined solely by the source, which is identified for both calculations
so the two sets of l values should match perfectly. The two sets of b values match perfectly once
the hybrid values have converged. The requirement for convergence is due to the use of uT in
Eq. (40), where uT requires updated values of both lT and b before it is correct.
The imperfect yet close match between the two sets of b values occurred because the sound

wave is at a low frequency ð96 HzÞ:
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At low frequencies (Helmholtz number o0:1) the acoustic reflection coefficient at the open
unflanged end of the pipe is almost unity [17]. The quasi-steady state open end boundary
(Eq. (34)) used for the pure mesh method of characteristics calculations reported in Section 3.1
implicitly states that the reflection coefficient is unity. In this case the duct simulated had a
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Fig. 6. l at the hybrid plane with a single frequency hybrid calculation, 96 Hz:

Fig. 7. b at the hybrid plane with a single frequency hybrid calculation, 96 Hz:
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diameter of 38 mm (Fig. 1) so the Helmholtz number is 0.033 at 96 Hz: At higher frequencies, say
above 300 Hz where the Helmholtz number is above 0.1 and the acoustic reflection coefficient at
the open end becomes significantly less than unity [17], the two sets of b values would differ from
each other. Assuming that the hybrid results for b remain correct at high frequencies then those
produced using a quasi-steady state open-end boundary are only correct below about 300 Hz for
typical intake duct diameters. 300 Hz corresponds to only 1.5 times the firing frequency of a 4-
cylinder engine running at 6000 rev=min: As the intake pressure waveform is known to contain
components at 3 or more times the firing frequency [2,11] it seems that the realism of the quasi-
steady state open-end boundary is reduced at higher engine speeds. It has been found however
that the quasi-steady state open boundary can give acceptable results, providing that a frequency
varying end correction is added to the physical pipe length [21,22]. This is possible when the
calculation involves a sinusoidal waveform but impossible for the general case because no single
end correction would be correct for every frequency component in a (as yet un-converged and
hence unknown) non-sinusoidal sound wave.
This problem may solved by using an extension to the hybrid method discussed so far. Eq. (30)

or (33) are still used along with the time shifting rules but rather than use one value of zð f Þ
as when l is sinusoidal, the inverse Fourier transform (IFFT) of zð f Þ is used when l is
non-sinusoidal.
zð f Þ should be calculated at a binary number of frequencies. The binary number n should be

large enough so that

nfo > fs; ð42Þ

where fo is the lowest cycle frequency (i.e., the 4-stroke cycle frequency or the lowest frequency
input by the source in Fig. 1) and

fs ¼
ao

Dx
C

1

DtMAX

; ð43Þ

where DtMAX is an approximation to the maximum time step allowed in a mesh method of
characteristics with a mesh size Dx: The correct maximum step size is given by

Dtp
Dx

a þ juj
; ð44Þ

zð f Þ is calculated using linear acoustic theory for the frequency range 0 Hz to fs=2 Hz at intervals
given by fs=n: For the case of a 10 mm mesh size and a cycle frequency of 50 Hz; n ¼ 1024: This
means that calculations are being made at frequencies up to fs=2 ¼ 28:16 kHz: This is obviously
well above the plane wave cutoff frequency given by a Helmholtz number equal to 1.84 and
therefore higher mode waves will be propagating that are not included in the linear acoustic
theory employed to calculate zð f Þ [17]. The need to include spurious high-frequency results for
zð f Þ is an unavoidable limitation of the method. The effects are minimized if the reflection
coefficient at the open end is made to tend to zero at higher frequencies.
For a 4-stroke IC engine at 6000 rev=min; fo ¼ 50 Hz: The n þ 1 frequency points describing

xð f Þ are then transformed into n time points for xðtÞ by the action of the IFFT.
The time marching method of characteristics calculation is performed with Dt ¼ 1=nfo: In this

way, n time points are used to calculate one full cycle at the lowest known cycle frequency fo: As
the IFFT provides n values for zðtÞ; each value in turn can be used in solving Eq. (30) or (33) for
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the first and any subsequent cycles. Thus zðtÞ is only calculated once but it may be used several
times if more than one cycle is simulated. In the case of an IC engine intake system, a new zðtÞ
must be calculated if the engine speed is changed (fo changes) or if the engine load changes (the
mean inlet Mach number changes and hence xð f Þ changes [17]).

4. Results

The general test case shown in Fig. 1 will be used to test:

(i) The mesh method of characteristics using a quasi-steady state open-end boundary (given by
Eq. (34)).

(ii) The hybrid method using the mesh method of characteristics coupled with a hybrid boundary
that is the solution to Eq. (30) with a sinusoidal l wave.

(iii) As for (ii) but solving Eq. (30) iteratively with a non-sinusoidal l wave.
(iv) As for (iii) but solving Eq. (33) directly.

In each case, results at the hybrid plane will be reported for a 2 Pa input at the source
maintained over a 0:045 s period. These will be compared with the results of the linear acoustic
theory [17], which is known to validate well against experiment for such a case [23,24].
Fig. 8 shows how the acoustic pressure ratio calculated at the hybrid plane using linear acoustic

theory varies with frequency. The acoustic pressure ratio is given by the ratio of positive-going
and negative-going travelling wave components:

pþ þ p�

pþ ; where pþ ¼ 1: ð45Þ
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Fig. 8. Acoustic pressure at the hybrid plane.
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At resonance, the modulus of the pressure ratio is maximum ð96 HzÞ and it is minimum at anti-
resonance ð192 HzÞ:
Fig. 9 shows the corresponding acoustic particle velocity given by

u ¼ ðpþ � p�Þ=ðroaoÞ: ð46Þ

This time the modulus of the acoustic particle velocity is a minimum at resonance and a
maximum at anti-resonance.
Fig. 10 shows the spectrum of specific acoustic impedance ratio zð f Þ given by

z ¼ 1þ R=1� R; ð47Þ

R ¼ p�=pþ: ð48Þ

Peaks in the modulus of zð f Þ correspond to resonances and minima occur at anti-resonances.
For each of the four time domain calculation schemes considered here to be realistic, the results

for acoustic pressure ratio, acoustic particle velocity and specific acoustic impedance ratio should
all agree with the results obtained from linear acoustic theory.
Figs. 11–13 show the results from the pure mesh method of characteristics with the quasi steady

state boundary given by Eq. (34). This time acoustic pressure ratio is given by

½p � po�
½p � po�MAX

ð49Þ

and the maximum value of the modulus of p from the last cycle calculated is taken. The other two
results are given by Eqs. (25) and (32). All these results agree closely with linear acoustic theory
although there are some differences around the anti-resonance frequencies.
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Fig. 9. Acoustic particle velocity at the hybrid plane.
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Fig. 10. Specific acoustic impedance ratio at the hybrid plane.

Fig. 11. Acoustic pressure ratio at the hybrid plane with a pure method of characteristics calculation (* ) vs. the results

of the linear acoustic model (-�-�-).
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Fig. 12. Acoustic particle velocity at the hybrid plane with a pure method of characteristics calculation (* ) vs. the

results of the linear acoustic model (-�-�-).

Fig. 13. Specific acoustic impedance ratio at the hybrid plane with a pure method of characteristics calculation (* ) vs.

the results of the linear acoustic model (-�-�-).
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Fig. 14. Acoustic pressure ratio at the hybrid plane with a single frequency hybrid calculation (* ) vs. the results of the

linear acoustic model (-�-�-).

Fig. 15. Acoustic particle velocity at the hybrid plane with a single frequency hybrid calculation (* ) vs. the results of the

linear acoustic model (-�-�-).
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Figs. 14–16 show the corresponding results obtained using Eq. (30) to solve the hybrid
boundary with a sinusoidal l wave. Again the pressure ratio and particle velocity results agree
well, but the specific acoustic impedance ratio obtained is rather low this time. The final value
obtained at resonance is found to be very sensitive to the frequency resolution applied at the
source: small changes in the input frequency move the starred point near 96 Hz quite significantly.
Figs. 17–19 show the results obtained by solving Eq. (30) iteratively with non-sinusoidal l

waves. The pressure ratio results (Fig. 17) agree closely with linear acoustic theory but the particle
velocity results less so (Fig. 18). The agreement is found to depend on the spectral resolution of
zð f Þ and the corresponding number of time points in zðtÞ: The agreement between specific acoustic
impedance ratio results remains acceptable though.
Figs. 20–22 show the results of solving Eq. (33) directly with non-sinusoidal waves. These

results agree completely with those obtained from the solution to Eq. (30) as they should.

5. Conclusions

A number of conclusions have been reached in this work.
Firstly, the quasi-steady state inflow boundary specified in terms of ingoing and outgoing

characteristics that is commonly adopted for engine simulation is correctly specified by using the
primitive pair p; r but will be unrealistic at frequencies above a Hemholtz number of around 0.1 as
only stagnation values po; ro are used. For the case of IC engine intake simulations this sets a
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Fig. 16. Specific acoustic impedance ratio at the hybrid plane with a single frequency hybrid calculation (* ) vs. the

results of the linear acoustic model (-�-�-).
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Fig. 17. Acoustic pressure ratio at the hybrid plane with a multi-frequency iterative hybrid calculation (* ) vs. the results

of the linear acoustic model (-�-�-).

Fig. 18. Acoustic particle velocity at the hybrid plane with a multi-frequency iterative hybrid calculation (* ) vs. the

results of the linear acoustic model (-�-�-).
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Fig. 19. Specific acoustic impedance ratio at the hybrid plane with a multi-frequency iterative hybrid calculation (* ) vs.

the results of the linear acoustic model (-�-�-).

Fig. 20. Acoustic pressure ratio at the hybrid plane with a multi-frequency analytical hybrid calculation (* ) vs. the

results of the linear acoustic model (-�-�-).
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Fig. 21. Acoustic particle velocity at the hybrid plane with a multi-frequency analytical hybrid calculation (* ) vs. the

results of the linear acoustic model (-�-�-).

Fig. 22. Specific acoustic impedance ratio at the hybrid plane with a multi-frequency analytical hybrid calculation (* )

vs. the results of the linear acoustic model (-�-�-).
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maximum frequency of around 300 Hz: Above that frequency the results obtained will become
increasingly unrealistic.
Secondly, a hybrid time and frequency domain boundary has been developed and tested against

linear acoustic theory. This agrees well with results obtained using a quasi-steady state boundary
at low frequencies (Helmholtz number less than 0.1), and should remain realistic at higher
frequencies in the range of Helmholtz number 0.1–1.84.
Thirdly, the cyclic nature of the operation of the IC engine has been exploited to make use of

the inverse Fourier transform to develop an analytical hybrid boundary that functions for non-
sinusoidal waves in ducts. The method is self-starting and does not rely on iterations over
complete cycles and is entirely analytical and therefore is an improvement over earlier hybrid
boundaries.
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